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IN DISTRIBUTION SYSTEMS

ast-iron pipes have been used to transport potable water for more
than 500 years (Gedge, 1992), and iron pipe corrosion has been a
problem for just as long. AWWA estimates that it will cost US
' water utilities $325 billion over the next 20 years to upgrade water
et distribution systems (AWWA,1999). This AWWAvalue is based on
the US Environmental Protection Agency estimate of $77.2 billion for service
and replacement of transmission and distribution system lines over the next
20 years (Davies et al, 1997). The majority of distribution system pipes are
composed of iron material: cast iron (38%), ductile iron (22%), and steel (5%)
(AWWA 1996). Moreover, a 1997 survey of the 100 largest AWWAResearch
Foundation (AWWARF)member utilities found that “the most common
distribution system problem is corrosion of cast-iron pipe” (Bray, 1997).

Although the body of literature on iron corrosion is quite large, most
studies were conducted at experimental conditions inconsistent with the
potable water distribution system environment (e.g., brine solutions, oil and
gas pipelines, highly acidic conditions, or very high temperatures). The goal
of this literature review is to summarize the results of several hundred peer-
reviewed articles relevant to the drinking water industry.

Corrosion of iron pipes in a distribution system can cause three distinct
but related problems. First, pipe mass is lost through oxidation to soluble iron
species or iron-bearing scale. Second, the scale can accumulate as large tuber-
cles that increase head loss and decrease water capacity. Finally, the release
of soluble or particulate iron corrosion by-products to the water decreases
its aesthetic quality and often leads to consumer complaints of “red water”
at the tap. The water industry must be concerned with all three of these
aspects of corrosion.
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Iron corrosion is an extremely complex process and can have several different manifestations,

one of which is tuberculation as shown in this iron pipe.

IRON CORROSION MANIFESTS
ITSELF IN DIFFERENTWAYS

Iron corrosion is an extremely com-
plex process. Because of the large vari-
ability in distribution system condi-
tions, a particular factor may be
critical in one system but relatively
unimportant in another system.
Moreover, corrosion itself has several
different manifestations and can be
evaluated in many ways. Previous
studies on iron pipe corrosion have
focused on different aspects of iron
corrosion. These include pipe degra-
dation (measured by weight loss, oxy-
gen consumption, or corrosion cur-
rent), scale formation (measured by
head loss or scale deposition), and by-
product release (measured by iron con-
centration, color, staining, turbidity,
or number of customer complaints).
Thus, it can be difficult to compare
conclusions or theories from different
studies. For example, one study found
that head loss increased with increas-
ing pH (Rice, 1947), whereas another

study saw decreased iron by-product
release at higher pH (Hidmi et al,
1994). Although both results could be
explained by greater incorporation of
corrosion by-products into the scale
at higher pH, from a utility perspective
the former result is “bad” whereas the
latter is “good.” Thus, this review
carefully tracked which aspect of iron
corrosion was studied (corrosion rate,
scale formation, and iron by-product
release). Table 1 provides a general
overview of the expected effects of
various factors on corrosion. The cat-
egories of “beneficial” and “detri-
mental” are used to describe how the
effect would be perceived by the water
utility or consumer.Further explana-
tion and references are provided in the
following sections.

SEVERAL WATER QUALITY
PARAMETERS
INFLUENCE CORROSION

Key water quality parameters that
are expected to influence corrosion

distrioutions

include pH, alkalinity, and
buffer intensity.

Role of pH. In the pH
range 7 to 9, both weight
loss (Stumm, 1960) and
degree of tuberculation
(Stumm, 1960; Larson &
Skold, 1958b; Rice, 1947)
were found to generally
increase with increasing
pH. In contrast, by-prod-
uct release was decreased
at higher pH (Hidmi et al,
1994). Again, this is con-
sistent with increased cor-
rosion by-products being
incorporated into the scale
layer. However, one study
found that both weight loss
and iron concentration
decreased as pH was raised
from 8.5 to 9.2 (Kashin-
kunti et al, 1999).

Alkalinity. Increasing
alkalinity generally leads to lower
weight loss (Kashinkunti et al, 1999;
Hedberg & Johansson, 1987) and
corrosion rate (Kashinkunti et al,
1999; Raad et al, 1998). Also, fewer
customer complaints of red water
were received when the alkalinity
was maintained at higher values
(Horsley et al, 1998).

Buffer intensity. Higher buffer
intensity is often associated with
increased alkalinity, although the two
parameters are not exactly equiva-
lent. However, their effect on iron
corrosion seems to be similar. Sev-
eral studies found that the maximum
weight loss for cast-iron samples
occurred at the minimum buffer
intensity (pH 8.4) presumably be-
cause higher buffer intensity attenu-
ates pH changes from corrosion reac-
tions at anodic and cathodic areas
(Clement & Schock, 1998; Van Der
Merwe, 1988; Pisigan Jr. & Singley,
1987; Stumm, 1960). However, one
study found the opposite effect—
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TABLE 1

Potential Effect On .

Summary of expected effects of various factors on iron corrosion

*

Factor

Corrosion Rate

Scale Buildup

By-product
Release

pH increase

Alkalinity increase

Buffer intensity increase
Dissoived oxygen increase
Kuch reaction

Calcite scale

Siderite scale

Green rust scale

Langelier index

Larson index increase

Disinfectant residual increase

Shouid not
be used

+

?

+

?
?

Should not
be used

+

+

O+

+ W

+

Should not
be used

+

Phosphate inhibitors

Silicates

+ o+ M

Pipe age increase
Water velocity increase —
Stagnation time increase
Microbial activity -
Temperatureincrease -
Dissolved copper -

Natural organic matter +

“Free carbon dioxide” -

?

+

|
[ T

~ M

-~
|

*+—beneficial effect, —detrimental effect, +—mixed results, ?—not known

weight loss for iron coupons in stag-
nant water increased with increasing
buffer intensity (Sander et al, 1996).

DISSCOLVED OXYGEN (DO) PLAYS
ROLE IN CORROSION

DO is an important electron accep-
tor in the corrosion of metallic iron:

Fé(metal) * 0.50; + H,0
* Fet2+20H (1)

DO can also play a role in the oxi-
dation of ferrous iron (Fe*2) or iron
scales, for example:
Fe*2 + 0.250, + 0.5H,0 + 20H~

* Fe(OH)z( (2)

3FeCOy + 0.50, * FesOuy
+3C0, (3)

4Fe3045 + Op * BFeOz  (4)

In these equations, (s) denotes a
solid precipitate.

Thus, oxygen concentration can
have varying effects on iron corrosion.
As expected, the corrosion rate
increases with increasing DO (Gedge,
1992), although several studies found
that iron release decreased with higher
DO during stagnation (Sarin et al,
2000; Beckett et al, 1998). Effectson
iron concentration and tuberculation
may be mixed depending on the type
of scale formed. Higher turbidity (a
surrogate for iron concentration) was
seen at lower oxygen saturation (Huls-
mann et al, 1986), but it is also
reported that water free of DO will
not tuberculate (Baylis, 1953). DO is
also responsible for the ability of
buffering ions, including phosphates,
o inhibit corrosion (Stumm, 1960;
Cartledge, 1959; Pryor & Cohen,
1951). For example, in water with DO
< 1 mg/L, solutions with phosphates
had a higher corrosion rate compared

with waters with no phosphates; in
water with 1-6 mg/L DO, this trend
was reversed (Uhlig et al, 1955).

KUCH MECHANISM
PROMOTES CORROSION
IN LOW DO CONDITIONS

In the absence of oxygen, it is pos-
sible for previously deposited ferric
scale (lepidocrosite, 1 -FeOOH) to act
as an electron acoceptor. This Kuch reac-
tion produces ferrous iron and allows
the corrosion reaction to continue even
after DO is depleted (AWWARF &
DVGW, 1996; Kuch, 1988):

Fe(metal) + 2FEOOH qqie) *+ 2H
* 3Fe*2 + 40H- (5)

A recent study (Sarin et al, 2000)
found that iron corrosion still pro-
ceeded under anaerobic conditions
despite the lack of lepidocrosite in
the iron scale, indicating that the
Kuch mechanism is not the only
mechanism of iron release in deoxy-
genated waters.

SCALE COMPOSED OF MANY
COMPOUNDS

The rate of corrosion of the iron
metal has little relationship to the
amount of iron that actually goes
into the water, primarily because of
the deposition of oxidized iron or
other compounds into a scale that
serves as a large reservoir of corro-
sion by-products. Iron scale is typi-
cally composed of many compounds
and is thus very heterogeneous (Table
2). This scale layer may provide pas-
sivation (protection) by limiting the
diffusion of oxygen to the metal sur-
face and slowing the corrosion reac-
tion. However, the scale will also
contribute iron to the water. This
includes both soluble species from
scale dissolution as well as scale par-
ticles that detach from the surface.
Unfortunately, it is difficult to model
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this scale behavior. The scales are
often poorly crystallized and hetero-
geneous, making soiubility predic-
tions very complex; even if solubility
was understood, the water may be
undersaturated because of kinetic or
mass transfer limitations. Particulate
detachment mechanisms are also
complicated, depending on factors
such as scale durability and adher-
ence, water velocity, and tempera-
ture changes.

Clearly, scale formation is a com-
plicated process that depends on a
variety of physical and chemical con-
ditions in each particular system.
However, several well-known types
of scale are postulated to affect iron
corrosion.

Calcium carbonate. Precipitation
of a thin layer of protective calcium
carbonate (presumably calcite) was
the earliest proposed method for con-
trolling iron corrosion, and it was
popular through at least the 1980s.
Many articles have been dedicated
to extolling the virtues of calcite lay-
ers (Flentje, 1961; Stumm, 1960;
Larson, 1960; Stumm, 1959;
Stumm, 1957; Larson & Skold,
1957; Stumm, 1956; Baylis, 1926;
Tillmans & Heublein, 1912), and
many others detail methods to
achieve a perfect layer of protective
calcite (see next section). However,
few articles ever demonstrated a ben-
eficial role for calcite in controlling
iron corrosion.

Siderite. The siderite model pos-
tulates that the formation of reduced
iron species, especially siderite
(FeCO3), provides a more protective
scale than oxidized ferric scales such
as goethite (FeOOH) or hematite
(Fe,03) (AWWARF & DVGW, 1996;
Sontheimeret al, 1981). Siderite has
been found in many iron scales
(Smith et al, 1997; Fiksdal, 1995;
Mishra et al, 1992; Feigenbaum et
al, 1978a; Feigenbaumet al, 1978b;

distrioutions

“Red water,” which is caused by the release of soluble or particulate iron corrosion

by-products to the water, can result in customer complaints.

Stumm, 1960; Baylis, 1926). How-
ever, it is interesting to note a dis-
crepancy regarding siderite in stud-
ies of pure iron in high-carbonate
solutions (not drinking water). Two
such studies concluded that siderite
was the key to forming a protective
scale (Simpson & Melendres, 1996;
Blengino et al, 1995). However, two
others with similar conditions found
that the formation of siderite
destroyed the protective nature of
other iron oxide films (Valentini et
al, 1985; lkeda et al, 1984).

Green rust. “Green rust” is the
generic name given to iron com-
pounds containing both ferrous and
ferric iron, as well as other ions such
as carbonate, chloride, and sulfate
(Genin et al, 1998; Simon et al,
1997). Green rusts have been identi-

fied in the corrosion products on iron
and steel (Tuovinen et al, 1980;
McGill et al, 1976), and they may
act similarly to siderite and form a
dense protective film (AWWARF &
DVGW, 1996).

CORROSION INDEXES
DO NOT SOLVE PROBLEMS

Calcite indexes. The Langelier
index (Merrill & Sanks, 1979; Mer-
rill & Sanks, 1978; Merrill & Sanks,
1977a; Merrill & Sanks, 1977b; Lan-
gelier, 1936) (also called the satura-
tion index [SI]) has been improperly
applied as the cure-all method for
solving corrosion problems since it
was first proposed in 1936. Although
this method was successful at some
utilities, it was by no means a uni-
versal method for controlling corro-
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sion. To his credit, Langelier never
intended the index to be used in this
manner and even pointed out its lim-
itation in certain waters (Langelier,
1946). Several other studies also
found that the Sl had no correlation
with corrosion rate (Pisigan Jr. &
Singley, 1987; Piron et al, 1986; Sin-
gley, 1981; Larson & Sollo, 1967,
Stumm, 1960). Despite proposed
modifications to the Langelier index
(Pisigan Jr. & Singley, 1985a; Pisi-
gan Jr. & Singley, 1985b; Schock,
1984) and its continued use by many
utilities, the AWWAmanual on cor-
rosion states, “In light of much
empirical evidence contradicting the
presumed connection between the LI
[Langelier index] and corrosion, this
practice should be abandoned”
(AWWARF & DVGW, 1996). Like-
wise, other calcite indexes that have
been proposed have only limited use
in corrosion control. These indexes
include the Ryznar index (Ryznar,
1944), aggressiveness index (Millette
et al, 1980), momentary excess (Dye,
1958), driving force index (Rossum
& Merrill, 1983), and calcium car-
bonate precipitation potential (Mer-
rill & Sanks, 1978; Merrill & Sanks,
1977a; Merrill & Sanks, 1977b).See
Rossum & Merrill (1983) for a
review of all indexes.

Larson index. The studies of Lar-
son (Larson, 1975; Larson & Skold,
1958a; Larson & Skold, 1957) found
that the ratio of chloride and sulfate
to bicarbonate was important, as
expressed in the Larson index:

_ 2[SO4]+ [Cl]

Larson index [HCO,]

(6)

A higher index indicates a more
corrosive water.Several studies qual-
itatively confirmed these resulits
(although they never directly tested
the accuracy of the Larson index) by

reporting that increased chloride
(Veleva et al, 1998; Hedberg &
Johansson, 1987) and sulfate (Vel-
eva et al, 1998; Riddick, 1944)
caused increased weight loss.
Another article proposed that the
presence of sulfate or chioride in the
water leads to iron chloride and/or
iron sulfate complexes in the iron
scale that increase ferrous iron dif-
fusion, causing increased iron con-
centrations (Elzenga et al, 1987).
However, several other studies found
contradictory effects, including that
sulfate inhibits dissolution of iron
oxides, leading to lower iron con-
centrations (Bondietti et al, 1993),
the presence of sulfate and chloride
caused a more protective scale on
steel surfaces (Feigenbaum et al,
1978a), and that sulfate and chio-
ride concentrations had no effect on
weight loss of cast iron (Van Der
Merwe, 1988; Piron et al, 1986).

DISINFECTANT RESIDUALS CAN
INCREASE CORROSION RATES

In general, disinfectant residuals
increase corrosion rates (Pisigan Jr.
& Singley, 1987; Hoyt et al, 1979).
Monochloramine was found to be
less aggressive than free chlorine (Tre-
week et al, 1985). However, if the
corrosion is microbially induced,
higher disinfectant residuals may
decrease corrosion {LeChevallier et
al, 1993).

PHOSPHATE INHIBITORS
PLAY AMBDEDROLE
Phosphate-based inhibitors have
been added to drinking water since
the early 1900s. Phosphates were first
used to prevent excessive calcite pre-
cipitation (Hoover & Rice, 1939).
The mechanism of this “threshold
treatment” was thought to be the
sorption onto calcium carbonate
nuclei, which prevented the calcite
crystals from growing outside of the

colloidal range (Hatch & Rice,
1939). Researchers later discovered
that these phosphates could some-
times prevent iron corrosion and red
water problems.

Polyphosphates. Condensed chain
phosphates, known generally as
polyphosphates, were the first phos-
phorus compounds to be used in cor-
rosion control. The original poly-
phosphate, known as sodium
hexametaphosphate, glassy phos-
phate, or metaphosphate glass, had
the approximate chemical formula
NaysP59044. Numerous studies
found that polyphosphate could pre-
vent corrosion and/or control red
water (Facey & Smith, 1995;
Williams, 1990; Huang, 1980;
McCauley, 1960a; McCauley, 1960b;
Hamilton & Flentje, 1958; lllig Jr.,
1957; Larson, 1957; Uhlig et al,
1955; Lamb & Eliassen, 1954;
Parham & Tod, 1953; Hatch, 1952;
Raistrick, 1952; Barbee, 1947; Rice,
1947; Cohen, 1946; Pallo, 1946;
Hatch & Rice, 1945a; Hatch & Rice,
1945b; Hatch & Rice, 1940). Cor-
rosion prevention and red water con-
trol are in fact two very different phe-
nomena, but this distinction was
sometimes overlooked in these stud-
ies. Many reported beneficial results
for corrosion are simply because of
stabilization of iron particles, causing
a decrease in the visual observation
of “red water.” This led researchers
to claim that iron by-product release
had decreased, when in reality the
iron concentration and even the cor-
rosion rate might have increased.

The theory of polyphosphate cor-
rosion prevention, if discussed at all
in these articles, varies widely.Some
researchers claimed that the poly-
phosphate adsorbed onto the iron
surface to form a protective film
(Hatch & Rice, 1945b). Other stud-
ies have stressed the importance of
calcium in polyphosphate effective-
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TABLE 2 Selected iron solids
Name Chemical Formula Iron Oxidation State

Ferrous hydroxide Fe(OH), i

Ferric hydroxide Fe(OH); i

Woustite FeO Il

Goethite 1 _FeOOH Il
Akaganeite | -FeOOH il
Lepidocrosite +-FeOOH 11
Hematite 4 Fe,0; i
Maghemite 1-Fey0O4 I
Magnetite Fe;O,4 (FeO*Fe,05) Itand i
Ferric oxyhydroxide FeO, (OH)3 o, i

Siderite FeCO, I

Iron hydroxycarbonate Fe,(OH)(CO3), I

“Green rust” Fe(li)y4Fe(ll)o(OH),(CO5,80,), ITand il
Vivianite Fes(POy), - 8H,0 i
Strengite FePO, i
Schrebersite Fe,P Not known

ness (Kamrath et al, 1993; Rangel et
al, 1992; Bailey, 1980; Huang, 1980;
Murray, 1970; Kleber, 1965;
McCauley, 1960a; McCauley, 1960b;
Uhlig et al, 1955; Parham & Tod,
1953; Hatch, 1952; Raistrick, 1952;
Green, 1950; Barbee, 1947; Hatch
& Rice, 1945a; Hatch & Rice,
1945b; Hazel, 1942; Hatch & Rice,
1939). This is believed to be because
of formation of a thin calcite layer
made protective by the adsorption
of polyphosphate ions (Morris Jr.,
1967; McCauley, 1960a; McCauley,
1960b; Raistrick, 1952; Evans,
1946). Other studies have stressed
the importance of flow conditions
on the efficacy of polyphosphate
action (see later section).
Orthophosphate. Unlike polyphos-
phates, orthophosphates are added
for scale formation but not for iron
sequestration (Wagner, 1992; Ben-
jamin et al, 1990; Boffardi, 1988;
Wagner & Kuch, 1984; Huang,
1980; Pryor & Cohen, 1951). One
often overlooked fact is that poly-

phosphates revert to orthophosphate
with time (Green, 1950), so the
results of many polyphosphate stud-
ies could be confounded by the pres-
ence of orthophosphate.

Bimetallic (zinc) phosphate. In the
1960s, manufacturers began blending
polyphosphates and orthophosphates
with 5-25% zinc to form bimetallic
phosphates, claiming either that the
presence of zinc accelerated poly-
phosphate film formation or that a
zinc orthophosphate or zinc poly-
phosphate film was superior to reg-
ular phosphate films for inhibiting
corrosion. These compounds were
reported to decrease corrasion com-
pared with regular polyphosphates
or orthophosphates (Bancroft, 1988;
Swayze, 1983; Bailey, 1980; Mullen
& Ritter, 1980; Mullen & Ritter,
1974; Murray, 1970; Powers et al,
1966; Kleber, 1965). However, sev-
eral studies found no benefit of zinc
phosphates compared with regular
phosphates (McNeill & Edwards,
2000; Volk et al, 2000; Malcolm

Pirnie, 1998; Williams, 1990; Wag-
ner & Kuch, 1984; Swayze, 1983;
Huang, 1980). Moreover, recent con-
cerns about zinc loading to waste-
water plants has somewhat curtailed
the usage of these zinc phosphates
(AWWARF & DVGW, 1996).

Other mechanisims. Several other
phosphate effects are traditionally
not considered in the context of pipe
corrosion. Phosphate sorption may
restabilize iron scales as colloids
(Hazel, 1942). A recent study found
that orthophosphate reduced the size
and increased the surface charge of
iron colloids (Lytle & Snoeyink,
2000). Polyphosphate has been
shown to induce ligand-promoted
dissolution of iron oxides, leading to
higher iron concentrations in water
(although very high phosphate con-
centrations may actually cause a
decrease in iron concentration [Lin
& Benjamin, 1990]). Orthophos-
phate can either inhibit or enhance
ligand-promoted dissolution depend-
ing on pH (Deng & Stumm, 1994;
Bondietti et al, 1993). Orthophos-
phate also dramatically decreases
reductive dissolution of iron oxides
(Biber et al, 1994).

SILICATES DISPERSE
IRON PARTICLES

Silicate compounds were first used
as a coagulation aid because of their
ability to adsorb onto particles and
decrease surface charge (Stumm et
al, 1967; Baylis, 1937). These prop-
erties were soon applied to seques-
tration (dispersion) of iron particles
in distribution systems (Schock et al,
1998; Robinson et al, 1992; Brow-
man et al, 1989; Dart & Foley, 1972;
Dart & Foley, 1970). An early study
(Riddick, 1944) found that natural
silica present in the water was con-
centrated in the relatively protective
iron scale. Addition of silicate-based
inhibitors has also been found to

C€2001 American Water Works Association
MCNEILL ET AL | PEER-REVIEWED | JOURNAL AWWA | JULY 2001 93

EPA-R5-2017-008527_0000208



The role of biological activity in a water pipe can be mixed but is generally considered

reduce iron corrosion rate (Rompre
et al, 1999; Raad et al, 1998; Wil-
liams, 1990). Finally, silicates are
reported to decrease the oxidation
of ferrous iron because ferrous iron
diffusion through the silicate film is
slower than through iron oxide scale
(Hadad & Pizzo, 1992).

Silicates appear to form a self-lim-
iting film on the corroded iron sur-
face that will break down if silica
dosing is stopped. It has been pro-
posed that the metal must already be
somewhat corroded because the pro-
tective film must consist of ferric
oxide and silicate (AWWARF &
DVGW, 1996); similarly, iron must
be oxidized in order to be sequestered
by the silicate (Schock et al, 1998;
Robinsonet al, 1992; Dart & Foley,
1972). Addition of silicates can also
raise the pH, which is generally ben-
eficial toward iron corrosion. Sili-
cates are naturally present in many
waters and may have effects similar
to those of added silicate inhibitors.

PIPE AGECAN DRAMATICALLY
AFFECT CORROSION

The length of time the pipe has
been aged dramatically affects its cor-
rosion. In general, both iron con-
centration and the rate of corrosion
increase with time when a pipe is first
exposed to water, but both are then
gradually reduced as the scale builds
up. However, the location of this
“cross-over” point varies widely with
water quality and other conditions.

MDED RESULTS AVAILABLE

ON BFFECT OF WATER VELOCITY
There are very mixed results for

the effect of flow velocity (see

Eliassen et al (1956) and Pallo (1946)

to be detrimental to most aspects of iron corrosion.

for a review). It is thought that two
factors are dominant: increased flow
provides more oxygen for the corro-
sion reaction, but it can also hasten
the precipitation of a protective layer.
For example, a study of mild steel
found that the weight loss increased
with increasing water velocity when
the DO was saturated (Gedge, 1992;
Pisigan Jr. & Singley, 1987). How-
ever, other studies found a more
dense protective layer at higher water
flow rates (Fiksdal, 1995). Also, if
the velocity is very high, the water
can scour away the protective scale.

There is anecdotal evidence that
phosphate inhibitors perform poorly
at low flow or stagnant conditions
(Rompreet al, 1999; Larson, 1957;
Cohen, 1946; Hatch & Rice, 1945b;
Hatch & Rice, 1940), and several
studies found that phosphate in-
hibitors had no effect or actually
increased iron corrosion under such
conditions (McNeill & Edwards,
2000; Maddison & Gagnon, 1999;
Rice, 1947; Pallo, 1946).

STAGNATION TIME MAY INCREASE
CONCENTRATIONS OF IRON

Iron concentrations were shown
to increase with longer stagnation
times (Sarin et al, 2000; Beckett et
al, 1998). One study from the
Netherlands (van Rijsbergen et al,
1998) found that turbidity in a cast-
iron distribution system peaked dur-
ing the night, then decreased in the
early morning as demand increased
and stagnation time decreased.

BIOLOGICAL ACTIVITY

ALSO IMPORTANT
Microorganisms are present in

many distribution systems (Holden et

al, 1995; LeChevallier et al, 1993; De
Araujo-Jorgeet al, 1992; Emdeet al,
1992; Smith & Emde, 1992; Vic-
toreen, 1984; Allen et al, 1980; Leeet
al, 1980; Tuovinen et al, 1980;
O’Conneret al, 1975; Larson, 1939),
and they can influence iron corrosion
in a number of ways. Bacteria have
been found in iron tubercles (Emde
et al, 1992; Smith & Emde, 1992;
Allen et al, 1980; Tuovinenet al,
1980; Victoreen, 1974). Growth of a
bacterial biofilm on a pipe wall may
serve as a barrier to corrosion (Aber-
nathy & Camper,1998; O’Conner et
al, 1975), but biofilms can also pro-
duce a differential aeration cell, lead-
ing to localized changes in oxygen
concentration and electrical potential
(Lee et al, 1980). The biopolymers in
the biofilm may also uptake soluble
metals (Tuovinen et al, 1980). Vari-
ous bacteria can affect iron speciation
by reducing Fe*3 or oxidizing ferrous
iron (Nemati & Webb, 1997;
Chapelle & Lovley, 1992; Okereke
& StevensJr.,1991; Kovalenko et al,
1982; Denisov et al, 1981; Shair,
1975). Bacteria may also consume
oxygen (Larson, 1939), cause local-
ized pH gradients (Tuovinen et al,
1980), and produce corrosive metabo-
lites such as hydrogen sulfide (De
Araujo-Jorge et al, 1992; Tuovinenet
al, 1980) or iron phosphide (lverson,
1998; Hamilton, 1985; Iverson et al,
1985; lverson, 1984; lverson &
Oldon, 1983; lverson, 1981; lverson,
1968). Thus, the role of biological
activity in a water pipe can be mixed
but is generally considered to be detri-
mental to most aspects of iron corro-
sion. In cases in which such activity is
dominant, it is not surprising that bio-
cides such as chlorine effectively
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reduce overall corrosion problems
despite their oxidative properties.

TEMPERATURE'S BFFECTS
CFTEN OVERLOOKED

The effect of temperatureon iron
corrosion is often overlooked. Many
parameters that influence corrosion
can vary with temperature. These
parameters include DO solubility,
solution properties (e.g., viscosity and
ion mobility), ferrous iron oxidation

rate, thermodynamic properties of
iron scale (leading to formation of
different phases or compounds), and
biological activity. Moreover, het-
erogeneous iron scale formed on
pipes may have large differences in
physical properties such as scale den-
sity (as described by the Pilling-Bed-
worth ratio) and coefficients of ther-
mal expansion (Schutze, 1997). If
the scale is exposed to temperature
gradients or cycling, these differences

can cause mechanical stresses in the
scale, leading to spalling or crack
formation.

Only a few studies have examined
the role of different temperatures in
distribution system corrosion. In one
study, iron samples held at 13°C had
lower weight loss compared with
samples at 20°C (Fiksdal, 1995).
Other studies found lower iron con-
centrations (Volk et al, 2000) and
fewer customer complaints of red
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dosing phosphate inhibitors. Typi-
cal water quality adjustments are
raising pH and lowering dissolved
inorganic carbon. According to
Table 1, raising pH is detrimental
to iron corrosion rate and scale
buildup but can reduce the release
of by-products.

Many utilities began adding phos-
phate inhibitors to meet the LCR,
often without regard to how the

inhibitors would affect iron corro-
sion. In fact, from 1992 to 1994 the
percentage of large utilities dosing
inhibitors doubled from 30 to 60%
(Edwards et al, 1999) and may be
even higher today. Although these
phosphate inhibitors can be effective
in decreasing lead and copper corro-
sion under some conditions, they can
also be quite detrimental to iron cor-
rosion (McNeill & Edwards, 2000).

Disinfectants/Disinfection By-prod-
ucts Rule (D/DBPR). Implementing the
D/DBPR (USEPA, 1998b) can affect
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tant residuals generally decrease cor-
rosion rates. However, decreased dis-
infectant residual may increase
corrosion if it is related to microbial
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activity. Many utilities may also
change to a different disinfectant (e.g.,
from chlorine to chloramine), which
can also affect iron corrosion.

The second aspect of the D/DBPR is
the requirement for increased removal
of organic matter (as measured by total
organic carbon [TOC]) through
enhanced coagulation or enhanced soft-
ening. Organic matter is thought to be
beneficial for iron corrosion rate and

scale buildup but detrimental to by-
product release, so the overall effect of
increased TOC removal is unclear.
Other potential effects of enhanced
treatment have been documented
(AWWA Government Affairs Office,
1998). Briefly, enhanced coagulation
can be associated with lower pH and
alkalinity and higher sulfate and chlo-
ride concentrations because of
increased coagulant doses. Enhanced

softening may be associated with
higher pH, lower alkalinity, and
decreased hardness. According to Table
1, each of these factors may have mixed
consequences for iron corrosion.
Enhanced Surface Water Treatment
Rule (ESWTR), Ground Water Rule
(GWR), and Total Coliform Rule (TCR).
In contrast to the D/DBPR, the pri-
mary concern for utilities trying to

meet the ESWTR (USEPA, 1998a),
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distrioution s,

GWR, or TCR (USEPA, 1989) will
be increased disinfection and disin-
fectant residual requirements. In
addition, the TCR may require
changes in circulation and flow pat-
terns in the distribution system in
order to decrease “dead ends.” This
may be beneficial to corrosion,
because these dead-end areas are
often the source of iron corrosion
problems because of low flow con-
ditions and decreased DO.

SUMMARY

Iron pipe corrosion is extremely
complicated and is affected by prac-
tically every physical, chemical, and
biological parameter in water distri-
bution systems. This work provides
a summary of key factors that utili-
ties must evaluate in order to miti-
gate iron corrosion problems. Utili-
ties should also consider potential
secondary impacts on corrosion

because of compliance efforts for
new regulations.
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